Numerical simulation of the drying of inkjet-printed droplets.
نویسندگان
چکیده
In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final distribution of the solute on an impermeable substrate is proposed. The model extends the work by Deegan, Fischer and Kuerten by taking into account convection, diffusion and adsorption of the solute in order to describe more accurately the surface coverage on the substrate. A spherically shaped droplet is considered such that the model can be formulated as an axially symmetric problem. The droplet dynamics is driven by the combined action of surface tension and evaporation. The fluid flow in the droplet is modeled by the Navier-Stokes equation and the continuity equation, where the lubrication approximation is applied. The rate of evaporation is determined by the distribution of vapor pressure in the air surrounding the droplet. Numerical results are compared with experimental results for droplets of various sizes.
منابع مشابه
Water Fast of Inkjet Print by Using Acrylic /Nano-Silver Ink
A colour ink jet printing with improved water fastness property was produced by using of special component in the ink’s formulation. In this study, the water fastness of ink jet prints which used acrylic/nano-silver resin nano-composite ink instead of conventional resin in ink’s formulation was examined. The nano composite resin was prepared via miniemulsion polymerization of acrylate monomers ...
متن کاملEvaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities.
The evaporation of picoliter water and ethanol droplets generated by drop-on-demand inkjet printing was investigated on substrates with apparent contact angles between 10^{∘} and 135^{∘} and thermal conductivities between 0.25 and 149 Wm^{-1}K^{-1}. Drying times were calculated from a diffusion-limited model for droplets with both pinned and moving contact lines as a function of droplet diamete...
متن کاملOptofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica.
Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106-...
متن کاملThe production of monodisperse explosive particles with piezo-electric inkjet printing technology
We have developed a method to produce discrete microparticles from compounds dissolved in nonpolar or polar solvents using drop-on-demand inkjet printer technology. A piezoelectric inkjet printhead located atop a drying tube produces precise droplets containing defined quantities of analyte. Droplets solidify into microparticles with known composition and size as they traverse down the drying t...
متن کاملInkjet-printed line morphologies and temperature control of the coffee ring effect.
We have studied inkjet-printed drops of a conductive polymer. We show how varying drop spacing and temperature lead to several different printed line morphologies and offer a simple geometric explanation for these various forms. Also, by controlling the evaporation profile of drying drops and lines, we demonstrate control of the coffee ring effect by which solute is transferred to the rim. Unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of colloid and interface science
دوره 392 شماره
صفحات -
تاریخ انتشار 2013